Aging, Intergenerational Transfers, and Economic Growth

Andrew Mason
September 2006
The Most Important Graph in the World: An Asian Economy's Economic Lifecycle

Large deficits at young and old ages.
The Most Important Graph in the World: An Asian Economy’s Economic Lifecycle

Reallocations from surplus to deficit ages required.

Per Capita Consumption and Labor Income

Consumption

Labor Income

Age
Why is it important?

The interactions among

– the economic lifecycle,
– population age structure, and
– systems for intergenerational support

have potentially important implications for

– the accumulation of wealth,
– rates of economic growth,
– interest rates, and
– generational equity.
The Aggregate Lifecycle

- Incorporates the per capita economic lifecycle and the population age structure.
- In a young (low income) population, this leads to large reallocations of resources in a downward direction.
- In an old (high income) population, this leads to large reallocations of resources in an upward direction.
Aggregate Economic Lifecycle, Niger 1950 Age Structure

Age reallocations are strongly downward.

Mean age of consumption (Ac) of 27 years

Mean age of earning (Ay) of 39 years

Aggregate C and Yl

Mean age of earning (Ay) of 39 years
Aggregate Economic Lifecycle, Japan 2050 Age Structure

Labor Income

Consumption

Reallocations are strongly upward

Ay = 43.4

Ac = 50.4
Downward and Upward Flows

• The net flows summarized by the mean ages of consumption and labor income combine two large countervailing flows:
 – Downward flow from working ages to child ages
 – Upward flow from working ages to old ages

• The relative importance of these two flows changes substantially over the demographic transition.
Implications for Wealth

Lee has shown that given golden rule steady state growth, the wealth $W(z)$ associated with any flow z across age groups is equal to:

$$W_z = Z \left[A_{\text{inflow}} - A_{\text{outflow}} \right]$$

- A_{inflow} – mean age of the inflows ($\$ \text{ weighted}$)
- A_{outflow} – mean age of the outflows ($\$ \text{ weighted}$)
- Z – annual flow of the variable in question.
Lifecycle Child Wealth (W_k)

- Average age of inflow (perhaps 10) is well below the average age of the outflow (perhaps 40). Hence, child lifecycle wealth is negative and large in Niger 1950.
- This value is the debt that people who are currently alive “owe” to those who have not yet been born.
- The debt is overwhelmingly in the form of an unfunded obligation to make transfers to unborn children.
Lifecycle Pension Wealth \((W_p)\)

- Average age of inflow (perhaps 80) is well above the average age of the outflow (perhaps 50). Hence, lifecycle pension wealth will be positive and large in Japan in 2050.
- This is the wealth on which the 2050 population will rely during its retirement years.
- It comes in two forms: transfer wealth and capital.

\[
W_p = T_p + K.
\]

- Transfer wealth is the present of value of net transfers, e.g., from Social Security. It is the flip side of the implicit debt imposed on future generations.
- Capital is growth enhancing.
Implications

• Depending on the features of the economic lifecycle, population aging will lead to an increase in lifecycle pension wealth.

• Depending on the features of the support system, this will lead to some combination of
 – an increase in capital (and National Income) and/or
 – an increase in transfer wealth, i.e., the implicit debt imposed on future generations.

• Based on golden rule growth will all its limitations.
The Simulation Model

- Small open economy
- Labor-augmenting technological growth with age-varying productivity that does not change over time.
- Consumption
 - Varies by age reflecting tastes, needs, etc., including altruism.
 - No bequests.
The Simulation Model (II)

• Reallocations to children consist of
 – Private transfers from parents
 – Public transfers from taxpayers (tax on labor income).

• Reallocations to old age consist of
 – Transfers
 – Asset-based reallocations (i.e. saving)
 – Assume that old-age transfer wealth is a constant fraction of lifecycle pension wealth.
Simulating a Demographic Transition

- Population of Niger 1950 – 2300
 - Highest TFR in the World in 2000 (7.9) declining to replacement in 2080
 - Life expectancy at birth: 36.2 in 1950-55; 44.3 in 2000-2005; 61.4 in 2045-50; 90 in 2300.
 - Lets us see the entire demographic transition
Figure 3. Age Distribution of Niger's Population, 1950-2200

- **Children (0-19)**
- **Working ages (20-64)**
- **Elderly (65+)**
Baseline Assumptions

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productivity growth</td>
<td>1.5%</td>
</tr>
<tr>
<td>Depreciation rate</td>
<td>3.0%</td>
</tr>
<tr>
<td>Discount rate</td>
<td>3.0%</td>
</tr>
<tr>
<td>Interest rate</td>
<td>6.0% → 4.2%</td>
</tr>
<tr>
<td>Age profiles</td>
<td>Taiwan 1977</td>
</tr>
<tr>
<td>Familial share of transfers to children</td>
<td>0.67</td>
</tr>
<tr>
<td>Pension transfers as a share of pension wealth</td>
<td>0.35</td>
</tr>
</tbody>
</table>
1950-2000: Decline in support ratio due to higher child survival depresses consumption

2000-2090: Window of opportunity, 1st dividend favors economic growth

2090-2200: 1st dividend turns negative

Source: Mason and Lee 2006.
C/Y declines relative to L/N leading to increase in A/Y

Increase in A/Y allows higher consumption to be sustained

Source: Mason and Lee 2006.
Combined effect of 1st and 2nd dividends ranges up 1\% p.a. Significant as compared with productivity growth of 1.5\% p.a.

Decline in child transfer wealth: fewer children; fewer young parents; but spending per child higher.

Rise in pension wealth and assets: fewer children, longer retirement, more elderly.

Source: Mason and Lee 2006.
Saving boom leads to higher sustained consumption.

Source: Mason and Lee 2006.
The Demographic Dividends

• First Dividend
 – Leads to 50% increase in consumption per equivalent adult
 – Dividend period (window of opportunity) lasts for 70 years
 – First dividend is ultimately transitory – by 2200 support ratio is only 10% above its 1950 level
The Demographic Dividends

• The Second Dividend
 – First dividend is being capitalized: consumption depressed by about 5% until near the end of the first dividend period
 – Adds almost 20% to consumption at the peak and thereafter

• Combined effect of the two dividends: explains 25% of growth from 2030-2090.
Sensitivity Analysis

• US economic lifecycle leads to greater assets, higher consumption in the short-run, but lower consumption in the long-run
• Increase in pension transfer wealth has a very large effect, more than proportional, on wealth and adversely affects consumption.
Effects of Aging Depend on Two Features of the Economy

• Economic Lifecycle – extent to which economic resources are reallocated from prime adult ages to young and old ages.

• Reallocation System – the economic mechanisms used to shift resources across the lifecycle.
National Transfer Account Project

• Objective is to develop and apply a comprehensive system of accounts that measures the economic lifecycle and the economic support system.

• Conceptual foundation: Lee (1994) but also Samuelson (1958), Diamond (1965), and Willis (1988).

• Core project is collaboration between Hawaii and UC-Berkeley; funding from National Institute of Aging. Other countries funded from diverse sources.
How does the economic lifecycle vary across societies and over time?
Figure 1B. Per Capita Labor Income and Consumption, Taiwan (1977)

Source: See Lee, Lee and Mason (2005) for methods and data sources for these estimates.

9/29/2006 Andrew Mason
Summary of Aggregate Economic Lifecycle, Taiwan, 1977-2003

Mean age of consumption

Mean age of labor income

Ay increased by 2.3 years.

Ac increased by 6.9 years.
Figure 1A. Per Capita Labor Income and Consumption, US (2000)

Source: See Lee, Lee and Mason (2005) for methods and data sources for these estimates.

9/29/2006

Andrew Mason
Components of US Labor Income

Source: Gretchen Donehower (2006); Lee et al.
Components of US Consumption

Source: Gretchen Donehower (2006); Lee et al.
Summary Measures: Average Age of Profile

- Constant age distribution (US 1950 is used here)
- Recent strong increases in average ages of consuming AND producing.

Source: Gretchen Donehower (2006); Lee et al.
How do the economic support systems vary across societies and over time?
Old-Age Reallocation Systems

- **Familial Transfers**
- **Public Transfers**
- **Saving**

- 50-50 familial and saving
- 50-50 familial and public
- 50-50 saving and public

Mixed Strategies

US is mixture of saving and public transfers

9/29/2006 Andrew Mason
Old-Age Reallocations, US & Thailand.

Thailand is a mix of saving and familial transfers.
Old-age Reallocation System, Selected Countries.

- **Asset-based (%)**
- **Public transfers (%)**
- **Family Transfers (%)**

- **Thailand**: Mixed public and familial transfers
- **US**: Large public, less asset-based, no familial
- **Costa Rica**: Large public, less asset-based, no familial
- **Japan**: Large public, less asset-based, no familial
- **Taiwan**: Large public, less asset-based, no familial

9/29/2006 Andrew Mason
Work is preliminary

- Important changes in economic lifecycle but we have not yet investigated why.
- Large variation in the old-age asset reallocation system. Understanding this better is clearly a priority.
US
Lee, Ronald (ronlee)
Mason, Andrew (amason)
Miller, Tim (tmiller)
Ebenstein, Avi (ebenstei)
Wongkaren, Turro (turro)
Lee, Sang-Hyop (leesang)
Takayesu, Ann (takayesa)
Auerbach, Alan (auerbach)
Boe, Carl (cboe)
Comelatto, Pablo (pabloc)
Sumida, Comfort (comfort)
Herrera, Elena Zuniga (Elena)
Donehower, Gretchen (gstockma)
Schiff, Eric (eric)
Stojanovic, Diana (diana)
Langer, Ellen (erlanger)
Lattes, Pablo (lattes)
Taiwan
Key Institution: The Institute of Economics, Academia Sinica, Taipei, Taiwan.
Tung, An-Chi(actung)
Lai, Mun Sim (Nicole)(munsim)
Liu, Paul K.C.(kliu)

Japan
Key Institutions: Nihon University Population Research Institute and the Statistics Bureau of Japan, Tokyo, Japan.
Matsukura, Rikiya(matukura)
Fukui, Takehiro(jstat)
Ogawa, Naohiro(ogawa)
Kondo, Makoto(kondo)
Akasaka, Katsuya(akasaka)
Nemoto, Kazuro(nemoto)
Makabe, Naomi(makabe)
Sato, Ryoko(rsato)
Ogawa, Maki(mogawa)
Murai, Minako(murai)
Obayashi, Senichi(obayashi)
Suzuki, Kosuke(Suzuki)
Brazil
Lanza Queiroz, Bernardo(lanza)
Turra, Cassio(cturra)
Renteria, Elisenda Perez(elisenda)

Chile
Key Institution: United Nations Economic Commission for Latin America and the Caribbean, Santiago, Chile
Bravo, Jorge(jbravo2)

China
Key Institution: China Center for Economic Research, Beijing, China.
Ling, Li(Lingli)
Chen, Quilin(Chen)
France
Bommier, Antoine(bommier)
Wolff, Francois-Charles(wolff)

Thailand
Key Institution: Economics Department, Thammasat University.
Chawla, Amonthep (Beet)(amonthep)
Phananiramai, Mathana(Mathana)
Inthornon, Suntichai(Suntichai)

India
Key Institution: Institute for Social and Economic Change, Bangalore
Nanak Kakwani(kakwani)
Ladusingh, L.(ladusingh)
Narayana, M.R.(narayana)
Indonesia
Key Institution: Lembaga Demografi, University of Indonesia, Jakarta, Indonesia.
Maliki (maliki)
Wiyono, Nur Hadi (nhwiyono)
Nazara, Suahasil (nazara)
Chotib (chotib)

Philippines
Key Institution: Philippine Institute for Development Studies.
Racelis, Rachel H. (Rachel)
Salas, John Michael Ian S. (Salas)

Sweden
Lindh, Thomas (lindh)
Johansson, Mats (Mats)
Forsell, Charlotte (charlotte)
Uruguay
Furtado, Magdalena (furtado)
Bucheli, Marisa (marisa)

South Korea
An, Chong-Bum (cban)
Chun, Young-Jun (yjchun)
Lim, Byung-In (billforest)
Kim, Cheol-Hee (Kimch)
Jeon, Seung-Hoon (jsh1105)
Gim, Eul-Sik (kuspia)
Seok, Sang-Hun (good)
Kim, Jae-Ho (ksud)
Austria
Key Institution: Vienna Institute of Demography
Fuernkranz-Prskawetz, Alexia (alexia)

Costa Rica
Key Institution: CCP, Universidad de Costa Rica
Rosero-Bixby, Luis (lrosero)

Slovenia
Sambt, Joze (joze)
Support: National Institutes of Health

NIA, R01-AG025488
NIA, R01-AG025247