Health capital over the lifecycle: Empirical estimates using National Transfer Accounts

Michael R.M. Abrigo

University of Hawai'i at Manoa; and Philippine Institute for Development Studies

22 June 2016

Introduction

Not all kinds of human capital are used the same

- More knowledge increases productivity, e.g. Becker (1967), Ben-Porath (1967), Mincer (1974)
- More health increases time for production, e.g. Mushkin (1962), Grossman (1972)

Grossman Model: 40 years

Workhorse model in analyzing health demand

Extended in a number of directions

- Generalized, Muurinen (1982)
- Stochasticity, Cropper (1977)
- Longevity, Ehlrich and Chuma (1990)
- Comparative dynamic analysis, Ried (1998)

Few empirical estimates of some model parameters; estimates focus largely on elasticity

Objective

Estimate Grossman (1972) model parameters

- Minimum health stock requirement, i.e. death stock
- Health stock depreciation rates
- Initial health stock endowment

Simulate effect of various health policy experiments

Grossman model (Modified)

Individuals maximize expected lifetime utility

$$E[U] = \sum_{t=0}^{T} \beta^t U_t(c_t, H_t, I_t^C) \pi_t$$

subject to

$$\begin{split} l_t^S + l_t^H + l_t^W + l_t^C &= 1\\ c_t + \underline{l}_t p_t &= w_t l_t^W (H_t)\\ H_t &= \underline{l}_t + (1 - \delta_t) H_{t-1} \end{split}$$

 I_t^X , time devoted to $x = \{\underline{S}ick \text{ days}, \underline{H}ealth input, \underline{W}ork, \underline{C}onsumption\}; c_t$, consumption of numeraire good; \underline{I}_t gross investments in health; H_t , health stock; p_t, w_t , prices; β , discount factor; π_t , survival propensity; δ_t , health stock depreciation rate; T, optimal length of life

Literature

Much of empirical work revolves around (i) the Euler equation, or (ii) the health stock law of motion

- Estimates for health care demand elasticities
- ► Health proxied by subjective well-being, sick days, etc.

Little attention is given to survival probability π_t , as well as to estimating death stock <u>h</u> and depreciation rate δ_t

Empirical duration model

Death occurs whenever the health stock H_t is below some critical level \underline{h} , i.e. in order to survive

$$H_t > \underline{h} | T \ge t$$

Suppose \underline{h}_t is stochastic, i.e. unobserved until when it is reached, then the hazard function may be specified as

$$\phi_t = P(H_t \le \underline{h}_t | T \ge t)$$

$$\phi_t = P(I_t + (1 - \delta_t)H_{t-1} \le \underline{h}_t | T \ge t)$$

With ϕ_t , other duration quantities may be calculated directly, including survival propensity π_t

Estimation

We estimate the parameters using Simulated Method of Moments:

- 1. For each agent, simulate j = 5,000 lifetimes
 - Fix observed π_t^D and I_t from data
 - ▶ Simulate death stock shock φe^x in $\underline{h}_t = \underline{h} \varphi e^x$
- 2. Choose $\{\underline{h}, \delta_t, H_0\}$
- 3. Calculate $H_t = I_t + (1 \delta_t)H_{t-1}$
- 4. Define $1_t = 1_t(H_t > \underline{h}_t | 1_{t-1} = 1)$
- 5. Estimate $(1 \phi_t)$ by averaging 1_t over j if $1_{t-1} = 1$
- 6. Calculate simulated $\pi_t^M = \prod_{s=0}^t (1 \phi_s)$
- 7. Repeat (2)-(6) to minimize $(\pi_t^D \pi_t^M)'(\pi_t^D \pi_t^M)$

Data

National Transfer Accounts (www.ntaccounts.org)

- Accounting framework consistent with UN System of National Accounts that provides estimates of how much is produced, consumed, and shared at each age
- Currently estimated in 70+ economies; estimates for 36 economies used in this study
- Estimates for both private and public consumption; Normalized by average labor income of prime-age workers

UN Life tables

- Provide survivorship at 0, 1, 5, 10, ..., 85
- Missing observations are linearly interpolated

Health over the lifecycle

Health consumption over the lifecycle

Health consumption by sector over the lifecycle

Grossman parameter estimates

		Inc	Income group	
	Full Sample	Low	Middle	High
	7.328	7.440	7.319	7.285
	(0.082)	(0.046)	(0.114)	(0.215)
<u>h</u>	0.990	1.016	0.999	0.979
	(0.012)	(0.006)	(0.011)	(0.028)
δ_{10}	-0.046	-0.017	-0.030	-0.098
	(0.004)	(0.003)	(0.003)	(0.009)
δ_{20}	0.003	0.000	0.004	-0.014
	(0.004)	(0.004)	(0.005)	(0.014)
δ_{30}	0.004	0.017	0.010	0.022
	(0.004)	(0.003)	(0.002)	(0.010)
δ_{40}	0.036	0.013	0.016	0.047
	(0.005)	(0.003)	(0.005)	(0.007)
δ_{50}	0.028	0.013	0.037	0.045
	(0.006)	(0.002)	(0.008)	(0.009)
δ_{60}	0.035	0.041	0.028	0.045
	(0.011)	(0.003)	(0.008)	(0.011)
δ_{70}	0.057	0.059	0.058	0.050
	(0.005)	(0.005)	(0.006)	(0.007)
δ_{80}	0.075	0.056	0.076	0.104
	(0.006)	(0.003)	(0.008)	(0.008)
2 (7)	0057 50	2105 00	0010.00	4606.16
$\chi_{\delta_{10}=\ldots=\delta_{80}}(I)$	3357.59	3125.92	2319.26	4606.16
$\overline{\delta}_t = T^{-1} \sum \delta_t$	0.024	0.023	0.025	0.025
	(0.001)	(<0.001)	(0.001)	(0.001)
Pseudo — R ²	0.71	0.76	0.77	0.94
N	2916	648	891	1377
Countries	36	8	11	17

Health catch-up

Policy experiments

Interventions

- Uniform increase in health consumption
- One-time increase at specific age
- Uniform increase from birth to specific age

Outcomes

- Life expectancy: $\sum_{0}^{T} \tilde{\pi}_{t}$
- Expected lifecycle surplus: $\sum_{0}^{T} \tilde{\pi}_{t} (YL_{t} C_{t})$

Policy experiments: Scenario 1

Uniform increase in health consumption

Policy experiments: Scenario 2

Policy experiments: Scenario 3

Uniform increase in health consumption from birth to specific age

Conclusion

- Confirm Grossman's (1972) conjecture of increasing health depreciation rates with age
- Bonus from investing in health early in the lifecycle
- Policy experiment: Additional health investments do not necessarily increase material measure of well-being
- Caveat: Estimates are based on representative agent, i.e. average consumer