Population Aging, the Demographic Dividend, and Economic Growth in Asia

Joon Kyung Ha Sang-Hyop Lee

11th Global Meeting of the NTA Network June 20-25, 2016, Saly, Senegal

Question

East Asia has converged toward high-income economy

 Significant part of growth has been due to demographic transition (1st and 2nd DD)

Can the other regions of Asia fully converge?
 Or not?

This paper: Demography-driven middle-income trap

- Develop models that incorporate the support ratio (SR), human capital, speed of convergence, and cost of children
- Support ratio explains a lot of economic convergence in Asia toward high-income economy
- However, if fertility responds too sensitively to economic convergence or if the cost of human capital investment is too high, then a middle-income trap is possible

(1) Growth model accounting for support ratio (SR)

Aggregate production: $Y = AK^{\alpha}(hL)^{1-\alpha}$

Per capita: $y = Ak^{\alpha}h^{1-\alpha}ml$

y = Y/N, k = K/L, $m = L/N_w$, $l(DSR) = N_w/N$

$$y = Ak^{\alpha}h^{1-\alpha}qESR$$
 $q \equiv \frac{\overline{c}}{\overline{v}}, ESR \equiv \frac{\overline{y}L}{\overline{c}N}$

Decomposing the speed of convergence

•
$$\frac{y_i}{y_{max}} = \frac{A_i}{A_{max}} \frac{k_i^{\alpha}}{k_{max}^{\alpha}} \frac{h_i^{1-\alpha}}{h_{max}^{1-\alpha}} \frac{m_i}{m_{max}} \frac{l_i}{l_{max}}$$

•
$$g\left(\frac{y_i}{y_{max}}\right) = g\left(\frac{A_i}{A_{max}}\right) + \alpha g\left(\frac{k_i}{k_{max}}\right) + (1-\alpha)g\left(\frac{h_i}{h_{max}}\right) + g\left(\frac{m_i}{m_{max}}\right) + g\left(\frac{l}{l_{max}}\right)$$

• Let's estimate: Data issues (simulation , # of countries)

Digression: DSR vs. ESR (1950–2100): Australia and Bangladesh

DSR vs. ESR (1950–2100): Korea and Indonesia

Alternative ideas? Realistic per capita flows (Lao PDR, 2012)—ESR

Not meaningful per capital flows: Any country—DSR

Abstract per capita flows: Lao PDR, 2012

Abstract per capita flows: Japan, 2009

Some observations on convergence (1970–2011)

- Per capita GDP
 - Convergence has been generally happening since the mid-1980s (Korea and Singapore the highest)
- Other variables
 - Capital per worker (8% in India, 50% in China) : Convergence happened only after the 1990s; however, Japan's physical capital per worker started to stagnate in the early 1990s
 - Human capital per worker converges in most Asian countries
 - TFP (18% in China, 39% in Korea) and employment/working age population: No trend and varies a lot
- Support ratios (direct impact)
 - Converging toward the US since the 1980s in most countries; however, countries such as Japan show a divergence

Figure 1. Income per capita of Asia (left) and the world (right) as a ratio of the US

Note: lb/ub refers to the 95% confidence interval.

Figure 2. Income per capita as a ratio of the US

Figure 3. Capital per worker of Asia (left) and the world (right) as a ratio of the US

Note: lb/ub refers to the 95% confidence interval.

Figure 4. Capital per worker as a ratio of the US

Graphs by country

Figure 5. Human capital per worker of Asia (left) and the world (right) as a ratio of the US

Note: lb/ub refers to the 95% confidence interval.

Figure 6. Human capital per worker as a ratio of the US

Graphs by country

Figure 7. TFP of Asia (left) and the world (right) as a ratio of the US

Note: lb/ub refers to the 95% confidence interval.

Figure 8. TFP as a ratio of the US

Graphs by country

Figure 9. Employment-working age population ratio of Asia (left) and the world (right) as a ratio of the US

Note: lb/ub refers to the 95% confidence interval.

Figure 10. Employment-working age population ratio of Asia as a ratio of the US

Graphs by country

Figure 11. Support ratio of Asia (left) and the world (right) as a ratio of the US

Note: lb/ub refers to the 95% confidence interval.

Figure 12. Support ratio of Asia as a ratio of the US

Graphs by country

(2) Model for the speed of convergence accounting for SR

• Absolute/conditional convergence hypotheses

$$g\left(\frac{y_i}{y_{max}}\right) = \beta \ln \frac{y_i}{y_{max}} + \sum \gamma_j \ln x_j$$

where x_i are investment rates and other relevant variables

- Nelson and Phelps (1966): x can be the level of human capital
- HC is needed to learn new technologies from the frontier
- Our hypothesis: support ratio matters for the speed of convergence
- Support ratio ↑ → Saving/Investment ↑ → Convergence ↑
- Sort of "2nd DD"

Graphs by country

Table 2. Support ratios and national saving (GDP minus consumption and gov't spending) as a ratio of GDP – panel regression results for world and Asia

Dependent	National saving	– world	National saving	saving - Asia	
variable	Random effect	Fixed effect	Random effect	Fixed effect	
Level of support ratio	1.7618*** (0.1595)	1.5337*** (0.1646)	1.9178*** (0.2348)	1.8443*** (0.2372)	
Constant	-9.1003*** (0.6556)	-8.0694*** (0.6753)	-9.4484*** (0.9719)	-9.0777*** (0.9742)	
# observations	3558	3558	988	988	
# countries	93	93	25	25	
R square	0.2166	0.2166	0.1660	0.1660	

Note: All variables are logged. Numbers in parenthesis are standard errors. *, **, *** refers to the significance level of 10%, 5%, 1%, respectively.

By sub-region in Asia (preliminary)

Region	coefficient	t value
East Asia	2.11	(10.49)
South Asia	2.34	(5.05)
South-East Asia	1.41	(5.01)

Panel regression with fixed effects, 1970–2011 Dependent variable: National saving rate (log) Independent variable: Support ratio (log)

Table 3. Support ratios and investment rates – panel regression results for world and Asia

Dependent	ependent Investment rate - world Investment rate - Asia		nt rate - Asia	Gov't edu spending (% of GDP) - world		Gov't edu spending (% of GDP) - Asia		
variable	Random effect	Fixed effect	Random effect	Fixed effect	Random effect	Fixed effect	Random effect	Fixed effect
Level of support ratio	1.0698*** (0.0879)	0.9325*** (0.0910)	1.6192*** (0.1352)	1.5875*** (0.1384)	1.1462*** (0.0987)	1.1876*** (0.1026)	1.2465*** (0.1275)	1.2836*** (0.1289)
Constant	-6.0513*** (0.3611)	-5.4897*** (0.3724)	-8.2013*** (0.5570)	-8.0713*** (0.5674)	-3.3489*** (0.4067)	-3.4799*** (0.4221)	-3.9436*** (0.5300)	-4.0481*** (0.5294)
# observations	3906	3906	1050	1050	2077	2077	540	540
# countries	93	93	25	25	93	93	25	25
R square	0.2555	0.2555	0.2253	0.2253	0.0422	0.0422	0.0103	0.0103
Note: All variables are logged. Numbers in parenthesis are standard errors. *, **, *** refers to the significance level of 10%,								

5%, 1%, respectively.

Estimating $g\left(\frac{y_i}{y_{max}}\right) = \beta \ln \frac{y_i}{y_{max}} + \sum \gamma_j \ln x_j$

 Table 4. Panel regression results for the speed of convergence (1)

Dependent	(1)	World	(1)	Asia	(2) World		(2)	(2) Asia	
variable: speed of convergence	Random effect	Fixed effect							
GDP per capita relative to the US	-0.0020 (0.0019)	0.0446*** (0.0052)	-0.0065* (0.0037)	0.0360*** (0.0105)	-0.0022 (0.0018)	0.0449*** (0.0052)	-0.0060* (0.0036)	0.0341*** (0.0102)	
Investment rate relative to the US	0.0075 (0.0031)	0.0088** (0.0041)	-0.0003 (0.0083)	-0.0168* (0.0098)	0.0064** (0.0031)	0.0083** (0.0041)	0.0009 (0.0081)	-0.0169* (0.0098)	
Average human capital relative to the US	-0.0068 (0.0085)	0.0513** (0.0206)	0.0139 (0.0201)	0.0442 (0.0533)					
Support ratio relative to the US	0.1021*** (0.0215)	0.1000*** (0.0379)	0.1666*** (0.0427)	0.2032** (0.0873)	0.0937*** (0.0195)	0.1577*** (0.0290)	0.1783*** (0.0391)	0.2574*** (0.0577)	
Constant	0.0081*** (0.0030)	0.1092*** (0.0117)	0.0195** (0.0097)	0.1079*** (0.0300)	0.0100*** (0.0024)	0.0922*** (0.0087)	0.0144** (0.0063)	0.0874*** (0.0168)	
# observations	3772	3772	1025	1025	3813	3813	1025	1025	
# countries	92	92	25	25	93	93	25	25	
R square	0.0163	0.0089	0.0243	0.0081	0.0153	0.0092	0.0239	0.0086	

Note: All variables are logged. Numbers in parenthesis are standard errors. *, **, *** refers to the significance level of 10% 5%, 1%, respectively.

$$g\left(\frac{y_i}{y_{max}}\right) = \beta \ln \frac{y_i}{y_{max}} + \sum \gamma_j \ln x_j$$

Table 5. Panel regression results for the speed of convergence (2)

Dependent	(3)	World	(3)	Asia	Asia (4) World		(4) Asia	
variable: speed of convergence	Random effect	Fixed effect	Random effect	Fixed effect	Random effect	Fixed effect	Random effect	Fixed effect
GDP per capita relative to the US	-0.0015 (0.0018)	0.0457*** (0.0052)	-0.0059* (0.0035)	0.0328*** (0.0102)				
Support ratio relative to the US	0.1040*** (0.0189)	0.1698*** (0.0284)	0.1796*** (0.0373)	0.2244*** (0.0545)	0.0919*** (0.0125)	0.1956*** (0.0285)	0.1433*** (0.0305)	0.2722*** (0.0526)
Constant	0.0113*** (0.0024)	0.0934*** (0.0087)	0.0146** (0.0058)	0.0830*** (0.0167)	0.0125*** (0.0018)	0.0224*** (0.0030)	0.0212** (0.0043)	0.0326*** (0.0057)
# observations	3813	3813	1025	1025	3813	3813	1025	1025
# countries	93	93	25	25	93	93	25	25
R square	0.0142	0.0089	0.0238	0.0084	0.0140	0.0140	0.0211	0.0211
Note: All variables	ara laggad	Numbers in r	aranthagia ar	a standard arro	*** **	k rafara ta tha	ignificance 1	aval of 100

Note: All variables are logged. Numbers in parenthesis are standard errors. *, **, *** refers to the significance level of 10%, 5%, 1%, respectively.

(3) Model for the MIT accounting for SR

- Household's utility maximization: qualityquantity tradeoff
- $u = \chi \log(b) + (1 \chi) \log(c)$ s.t.b.c. $\tau Ib + c \leq I$,

$$b = \frac{\chi}{\tau}$$

(b: fertility, χ : benefit, τ : child-rearing cost)

Our hypothesis:
$$\tau = z \left(\frac{y_{i,-1}}{y_{max,-1}}\right)^{\eta} h_{-1}^{\nu}$$

$$\log(b) = \log(\chi) - \log(z) - \eta \log\left(\frac{y_{i,-1}}{y_{max,-1}}\right) - \nu \log(h_{-1})$$

Figure 16. The stages of economic convergence and possibility of a middle income trap

Table 6. Panel regression results for fertility – world and Asia

Dependent variable: fertility	(1) V	World	(1)	Asia	(2) World		(2) Asia	
	Random effect	Fixed effect	Random effect	Fixed effect	Random effect	Fixed effect	Random effect	Fixed effec
GDP per capita relative to the US(lagged)	-0.0422*** (0.0078)	-0.0411*** (0.0082)	-0.0907*** (0.0130)	-0.0999*** (0.0133)	-0.0878*** (0.0133)	-0.0120*** (0.0152)	-0.1373*** (0.0263)	-0.1377*** (0.0288)
Level of human capital per worker(lagged)	-1.6510*** (0.0177)	-1.6568*** (0.0180)	-2.0574*** (0.0341)	-2.0695*** (0.0340)				
Constant	2.3166*** (0.0330)	2.3229*** (0.0189)	2.5219*** (0.0724)	2.5156*** (0.0342)	0.9646*** (0.0381)	1.0870*** (0.0246)	0.9621*** (0.0866)	0.9619** (0.0492)
# observations	3771	3771	1024	1024	3812	3812	1024	1024
# countries	92	92	25	25	93	93	25	25
R square	0.6873	0.6869	0.5036	0.5006	0.4786	0.4786	0.1017	0.1017
Note: All variables are logged. Numbers in parenthesis are standard errors. *, **, *** refers to the significance level of 10%,								
5%, 1%, respectiv	vely.							

By sub-region in Asia (preliminary)

Region	coefficient	t value
East Asia	-0.833	(-24.12)
South Asia	-0.170	(-2.01)
South-East Asia	-0.798	(-16.10)

Panel regression with fixed effects, 1970–2011 Dependent variable: Level of development: GDP per capita as a ratio of the US (log) Independent variable: Total fertility (log)

Fertility/human capital tradeoff

Conclusion

- Support ratio explains a lot of economic convergence in Asia toward high-income economy
- Asia's speed of convergence is highly sensitive to support ratios
 - Efficiently reaping the benefits of the demographic dividend
- Asia's fertility is perhaps too sensitive to economic development (Getting "very" old before getting rich in Asia)
 - Demographic dividend grows faster but it also declines faster:
 Possibility of demography-driven middle income trap
- East Asia vs. South East Asia
 - There may be within-Asia convergence for some time, but it is not clear if Asia will eventually converge to the frontier countries

What is necessary for convergence? (avoiding DD MIT)

- Reducing fertility below the long-run SR-optimal level falls into a trap
- Raising fertility in the short-run could be very costly

 → making fertility less sensitive to the level of
 development?
 - Socializing costs of childbearing?
 - Reducing transfers to elderly?

