Generational Wealth Accounts

David McCarthy, James Sefton, Miguel Sanchez-Martinez, and Katerina Lisenkova, with Ron Lee and Joze Sambt

(NIESR, Imperial, University of the Witwatersrand)

Outline

- Background
 - Conceptual understanding of generational economy
 - Policy issues
 - Accounting: Balance sheets and income statements
 - The economics of discounting
- Generational Wealth Accounts
 - NTA flow equation at each age
 - Inter-temporal budget constraints (public, private) quantify aggregate flows to and from the unborn
- Some examples to assist interpretation
- Focus here is on portfolio composition of resources and uses, and implications for aggregate sustainability
 - Four European countries are compared: UK, Slovenia, Spain, Austria

Background (I)

- Understanding the generational economy
 - Generational distribution of resources (and equity)
 - Inter-generational risk-sharing (at an aggregate level)
 - Role played by the public and private sectors
- Inter-generational equity is a major policy issue
 - Population ageing and the welfare state
 - Effect on composition and level of wealth and physical and human capital
 - Effect on household structure
- Comprehensive understanding of household portfolios, including transfer wealth
- BUT: work is held back by absence of a comprehensive measure of generational welfare
 - Lee arrows (Lee and Miller 1994) assume steady state, golden rule, constant profiles
 - Trying to generalise the approach to examine sustainability

Background (II)

Accounting

- Two parts to accounting systems
 - Balance sheets provide a fair picture of the stock of resources (double-entry accounting systems count two stocks: Assets and liabilities, resources and uses)
 - Income statements estimate flows of resources (and link the two)
- Generally, income statements link successive balance sheets, so with an infinite series of income statements, you can create a balance sheet

Examples

- Bank statements
- Financial accounting
- Government accounting

Background (III)

- In principle, NTAs allow construction of a set of generationalspecific balance sheets
 - Given a set of future flows by and to each generation over its future life, a corresponding measure of stocks can be derived
 - Transversality conditions allow flows to and from the unborn to be measured
 - In the case of public-sector accounting, this is called Generational Accounting
 - NTA allows a generalisation to what we have called GWA
- But you need to:
 - Project future resource flows for each cohort in each future year
 - Discount these back to the present
 - (Failure to discount results in absurd conclusions)

Background (IV)

Economics of discounting

- Justifications for discounting
 - Subjective rate of time preference (problematic across generations)
 - Changes in expected levels of consumption (seems selfish?)
 - Risk and uncertainty
- Choice of discount rate allows risk to be shifted between generations in subtle ways
 - High discount rate applied to outflows: Shifts risks to future generations
 - Low discount rate applied to outflows: Shifts risks to current generations
- In a financial sense, baseline discount rate for a risk-free cash flow is a 'risk-free' rate
 - Generally taken as the rate of return on a portfolio of risk-free government bonds
 - (Remember, government can spread risks across the entire economy, through tax collection, and across different generations, through borrowing and investing)
 - Focus on rate of return of a portfolio of bequeathable, risk-free assets (government bonds) allows us to abstract from generational issues
- But there is no clear guidance on correct way to adjust for risk, especially inter-generationally

Generational Wealth Accounts

- Similar approach to Lee and Sambt (2015), although independent(!)
- Use GA principles to calculate public and private transfer wealth and implicit transfers to and from the unborn in the presence of inter-temporal budget constraints of government and private sector
- Public transfer wealth: Generational account of Auerbach, Kotlikoff, and Gokhale (1991)
- Private transfer wealth: Use NTA profiles, balanced to population projections, discounted

Using NTA flow equation

 We used the NTA flow equation for each generation at each point in future to obtain a balancing equation

$$y_{k,t}^{l} - c_{k,t} = (\tau_{k,t}^{g,-} - \tau_{k,t}^{g,+}) + (\tau_{k,t}^{p,-} - \tau_{k,t}^{p,+}) - y_{k,t}^{a} + b_{k,t}$$

- Lump all flows not included in income, consumption, or public and private transfers (excluding bequests) into a balancing item, called savings (including bequests) in NTA
 - In effect, cohorts are assumed to borrow from, or add to, a pool of resources in order to sustain their consumption plans, conditional on their labour income, public and private transfers
- Discount these to the present over remaining life time for each generation
 - We assume a real discount rate of 2% p.a., slightly higher than historical average real government bond yields in western countries

Using inter-temporal budget constraints

- Three inter-temporal budget constraints allow the transfers between the living and the unborn to be quantified
 - We cannot quantify total resources/uses of the unborn, as there are (hopefully) an infinite number of them
- Public sector
 - Unborn generations must inherit the government debt and take account of it in their decisions
- Private sector
 - Total private transfers must equal zero
- Overall
 - Total residual items must sum to zero

Some examples

- Before we get to the 'real' GWAs, useful to examine some simple examples
 - We have been struggling with interpretation: Generated a series of simple economies of increasing complexity and calculated GWA's for them as an aid to understanding

Population

Steady-state, n=g=0

 Very simple structure 	Х	l(x)	yl
Consumers	0	1000	1
 Constant labour income, followed by retirement 	1	900	1
 Pure life-cycle savers, level consumption 	2	800	1
 (Rate of subjective discount = r+q(x)) 	3	700	1
Economy	4	600	1
 Steady-growth path, golden rule (Lee, 1994) 	5	500	0
	6	400	0
	7	300	0
	8	200	0
	9	100	0
	10	0	

Ex 1: r=0, no government, perfect annuity markets

- Economy
 - r=0
 - Perfect annuity markets (or alternatively, all capital bequeathed to members of the same cohort)
- Individual behaviour
 - Level annual consumption = 0.7272...

 Aggregation YL = 	ate economy = 4000, C = 4000,		R	Resources	Uses	Balance	
– K=	5000	Age	YL	К	Total	C	
– (Sar	(Samuelson sense of capital)	0	4000	0	4000	4000	0
	ents trade claims on wages	1	3000	273	3273	3273	0
– Life-	-cycle portfolio composition	2	2100	518	2618	2618	0
– Zerc	b balances in final column	3	1300	736	2036	2036	0
=>	=> Lach generation sell suit	4	600	927	1527	1527	0
		5	0	1091	1091	1091	0
		6	0	727	727	727	0
		7	0	436	436	436	0
		8	0	218	218	218	0
		9	0	73	73	73	0
Natior	nal Institute of Economic and Social I	ResearchAll	11000	5000	16000	16000	

Ex 2: r=0.2, no government, perfect annuity markets

Individual behaviour

- Level p.c. annual consumption = 0.86095...
- (Higher consumption reflects capital income, need higher subjective discount rate to generate level consumption)
- Aggregate economy
 - YL = 4000, YK = 735, C = 4735,
 - K = 4411

	- K = 4411	1			1	1	1
	Conclusions in steady state		R	esources	5	Uses	Balance
-	- Higher C => Lower K in SS	Age	YL	А	Total	С	
	 Life-cvcle portfolio composition 	0	3000	0	3000	3000	0
	 Higher r => Lower EDPV(YL) 	1	2400	167	2567	2567	0
	 Zero balances in final column 	2	1800	350	2150	2150	0
	=> Each generation 'self suff'	3	1200	554	1754	1754	0
		4	600	782	1382	1382	0
		5	0	1038	1038	1038	0
		6	0	729	729	729	0
		7	0	462	462	462	0
		8	0	244	244	244	0
	National Institute of Economic and Social Resear	rch 9	0	86	86	86	0
		All	9000	4411	13411	13411	0

Ex 3: r=0.2, government, perfect annuity markets

- Government
 - Creates a PAYG pension system
 - Imposes a 10% payroll tax, runs balanced budget, so can pay 0.2666 to each 'retiree'
- Individual behaviour
 - Presence of PAYG system leads to lower savings, capital accumulation
 - Lower capital income leads to lower per capita consumption (0.8119 vs 0.8610)
- Aggregate economy
 - YL = 4000, YK = 466, TGO = 400, TGI = 400, K = 2794, C = 4466
- Conclusions in steady state
 - Lower savings => Lower capital accumulation in SS, lower YK
 - PAYG system introduces 'trade' with the unborn (and the dead)
 - Each generation still 'self sufficient', but in SS an implicit debt of 854 is passed on to the unborn (and an asset is received from the already dead)

Ex 3: r=0.2, government, perfect annuity markets

		Resou	rces		Balance			
Age	YL	А	TGI	Total	С	TGO	Total	
0	3000	0	129	3129	2829	300	3129	0
1	2400	106	155	2661	2421	240	2661	0
2	1800	222	186	2208	2028	180	2208	0
3	1200	351	223	1774	1654	120	1774	0
4	600	495	268	1363	1303	60	1363	0
5	0	657	322	979	979	0	979	0
6	0	462	226	688	688	0	688	0
7	0	292	143	435	435	0	435	0
8	0	154	76	230	230	0	230	0
9	0	55	27	81	81	0	81	0
Unborn						854		
All		2794	1754			1754		

Ex 3: r=0.2, government, perfect annuity markets

- Portfolio composition of resources and uses
 - Resources comprise a changing proportion of YL, A, TGI
 - Uses comprise C and TGO

Ex 4: r=0.2, government, perfect annuity markets, a bequest

Same as example 3, but we introduce a bequest

- The individuals who die at age 5 give a bequest of 100 to those who are alive at age 1, every year into the future (unnatural, but keeps it easy)
- All other bequests are to members of the same cohort, as before (or perfect annuity markets)
- Individual behavior
 - Bequest leads to higher peer capita consumption (0.8243 vs. 0.8119)
- Aggregate economy
 - YL = 4000, YK = 534, TGO = 400, TGI = 400, K = 3202, C = 4534
- Conclusions in steady state
 - Although savings are lower, capital is spent less quickly
 - Because K is around for longer, it accumulates, leading to higher K and YK, raising consumption
 - Each generation is no longer 'self sufficient', before bequests
 - Younger generations consume 'too much', older generations consume 'too little', in anticipation of receiving or making the bequest
 - <u>Two</u> forms of trading with the unborn: Government AND bequests

Ex 4: r=0.2, government, perfect annuity markets, a bequest

		Re	sources				Uses	5		Balance
Age	YL	А	TGI	BQI	Total	С	TGO	BQO	Total	
0	3000	0	129	43	3172	2872	300	0	3172	0
1	2400	191	155	0	2746	2458	240	48	2746	0
2	1800	311	186	0	2297	2059	180	58	2297	0
3	1200	446	223	0	1869	1679	120	69	1868	0
4	600	598	268	0	1466	1323	60	83	1466	0
5	0	672	322	0	994	994	0	0	994	0
6	0	472	226	0	698	698	0	0	698	0
7	0	299	143	0	442	442	0	0	442	0
8	0	158	76	0	234	234		0	234	0
9	0	56	27	0	282	82	6	0	82	0
Unborn				215		-	854	0		
All		3202	1754	258			1754	258		

 The living pass down a public-sector liability, but also a bequest asset to the unborn

Ex 4: r=0.2, government, perfect annuity markets, a bequest

- Portfolio composition of resources and uses
 - Resources comprise a changing proportion of YL, A, TGI and BQI
 - Uses comprise C, TGO and BQO

Example GWAs for the UK

Highly preliminary results

- Many strong assumptions (constant per capita profiles, no already legislated changes put into effect, no policy changes)
- Constant r = 5% per annum; g = 2% per annum
- No treatment of ROW, some public-sector pension liabilities and other public sector assets ignored, which national balance sheet etc., etc., etc.
- Population projections as per Eurostat up to 2080, our own ad-hoc method up to 2120 (when all those currently alive will be dead)

GWA 2007 (before crisis)

Aggregate Resources and Uses by Age Group, £Mn, 2012 Prices

				Re	esource	S			Uses						
	Population Mllns	Labour Income	Market Assets	Govt. Transfers	Priv. Transfers	Bequests	Funding Gap	Total	Govt. Consump.	Priv. Consump.	Govt. Transfers	Priv. Transfers	Bequests	Total	
75-90	4,333,400	4	1,040	901	69	-	-	2,013	519	537	284	101	572	2,013	
65-74	6,182,400	61	1,663	1,425	210	-	-	3,360	754	1,086	576	233	712	3,360	
55-64	7,479,700	835	2,862	2,337	480	-	-	6,514	1,220	2,324	1,382	492	1,095	6,514	
45-54	8,962,600	2,690	2,175	2,769	590	79	-	8,303	1,476	3,427	2,337	858	205	8,303	
35-44	8,428,200	5,013	1,423	3,413	698	834	-	11,381	1,763	4,594	3 <i>,</i> 405	1,619	-	11,381	
25-34	8,114,600	6,031	498	3,243	673	1,373	-	11,818	1,641	4,735	3,620	1,822	-	11,818	
15-24	7,718,700	6,798	105	3,615	974	299	1,465	13,255	1,945	5,488	3 <i>,</i> 928	1,894	-	13,255	
0-14	7,016,300	7,297	_	4,566	2,160		2,002	16,026	2,768	6,845	4,395	2,018	_	16,026	
Unborn					3,182						2,341				
All		28,730	9,766	22,268	9,037	2,585	3,467		12,086	29,036	22,268	9,037	2,585		
Debt/ Shortfall							-3,467				654				

 Assuming constant profiles going forward, we assume 2% real growth rate in aggregates and discount back at a real interest rate of 4%

Aggregate Resources and Uses by Age Group, £Mn, 2012 Prices

		Resources								Uses					
	Population Mllns	Labour Income	Market Assets	Govt. Transfers	Priv. Transfers	Bequests	Funding Gap	Total	Govt. Consump.	Priv. Consump.	Govt. Transfers	Priv. Transfers	Bequests	Total	
75-90	4,522,700	8	1,181	972	85	-	-	2,247	531	601	245	118	753	2,247	
65-74	6,969,400	94	2,148	1,695	272	-	-	4,209	850	1,336	595	293	1,134	4,209	
55-64	7,920,000	858	2,873	2,366	504	-	-	6,601	1,180	2,342	1,222	510	1,347	6,601	
45-54	9,253,100	3,012	2,398	3,072	714	9	-	9,205	1,563	3,654	2,379	1,015	594	9,205	
35-44	8,276,100	4,525	1,091	3,172	749	528	-	10,065	1,558	4,043	2,930	1,534	-	10,065	
25-34	8,650,200	5,944	472	3 <i>,</i> 485	822	970	-	11,692	1,658	4,677	3,417	1,941	-	11,692	
15-24	7,502,800	6,160	71	3,632	1,012	1,297	-	12,172	1,837	5,030	3,438	1,868	-	12,172	
0-14	7,637,500	6,768	-	4,669	2,211	1,024	483	15,155	2,683	6,467	3,970	2,035	-	15,155	
Unborn					2,944						4,866				
All		27,369	10,234	23,062	9,314	3,828	483		11,859	28,150	23,062	9,314	3,828		
Debt/ Shortfall							- 483				1,353				

 Comparing the GWA 2007 with GWA 2012 shows the impact of crisis on unborns

Conclusions

- GWA's provide a different perspective on NTA flows
 - Measure trades with the unborn and implications of current flows, under strong assumptions, for future generations and sustainability
- Private-sector transfers to the unborn are large and economically significant in magnitude
 - Both bequests and inter-vivos transfers appear important
- These serve to offset public-sector implicit debt transfers
- Analysis of portfolio structure and risk transfer inside economies is significantly incomplete without consideration of transfers
- Sustainability looks to be a problem in the UK for younger generations
- Bequests and public-sector implicit debt transfer risk between generations

